
Lists in Python 
Lists are an abstract data type which stores elements in an ordered manner. In Python, a list is 

created by enclosing the elements in square brackets [], separated by commas. 

 
list = [1, 2, 3] 

print(list) 

 

Lists can contain different types of data: integers, real numbers, characters, lists, tuples. 

 
#list of integers  

int_list = [1, 2, 3] 

#list of characters  

char_list = ['a', 'b', 'c'] 

#list of mixed types  

mixed_list = [1, 'a', [2]] 

 

Accessing list elements via indexes 
We can use the index [] operator to access elements of a list. Indices start at 0, so a list with 3 

elements will have an indices from 0 to 2. 

 
list = [1, 2, 3, 4, 5] 

 

print(list[0]) #first element 

print(list[1]) #second element 

print(list[-1]) #last element 

print(list[-2]) #penultimate element 

 

List Slicing  
We can access an array of elements in a list using the truncation operator : (colon).  

When cutting lists, the start index is inclusive, and the end index is exclusive. For example, 

list[2:4] returns a list with elements at indices 2 and 3, but not 4.  
 

list = [1, 2, 3, 4, 5]  

print(list[2:4]) 

>>> [3, 4] 

 

 



The head, the tail of the list 
The head of the list contains only the first element of the list - accessed via the index [] operator. 

The tail of the list contains all the remaining elements from the second to the last list element - 

accessed by the cut operation. 
list = [1, 2, 3, 4, 5] 

# head 

print(list[0]) 

#tail 

print(list[1:]) 

 

Concatenation of two lists 
We can use the + operator to combine two lists. 

 
list1 = [1, 2, 3, 4, 5] 

list2 = [6, 7] 

concat = list1 + list2 

print(concat) 

 

Traversing a list recursively 
Note: to solve the exercises in this lab, do not use repetitive structures (for, while), use 

recursion!  

We use the notions of head and tail presented previously to go through the lists.  
def display(list): 

if len(list) >= 1: 

head = list[0] # first item in list 

tail = list[1:] # all remaining items 

print(head) 

display(tail) 

 

display([1, 2, 3, 4, 7]) 

 

Accessing an index that does not exist  
list = [1, 2, 3] 

print(list[7]) 

>>> IndexError: list index out of range 
 

 

 



The reduce() function 
The reduce() function is defined in the functools module. It receives two arguments, a function 

and an iterable (in our case, a list) and returns a single value. Also, the reduce() function has an 

optional argument: an initial value. If this initial value is present, it will be placed before all 

elements in the calculation. 

 
functools.reduce(function, iterable, initial_value)  

 

To calculate the sum of all the integers in a list we can use reduce() together with an anonymous 

function (defined with lambda). 

 
import functools 

sum = functools.reduce(lambda a, b: a + b, [1, 2, 3]) 

print(sum)  

 

We can also use the operator module, learned in laboratory 2.  
 

import functools 

import operator 

sum = functools.reduce(operator.add, [1, 2, 3]) 

print(sum) 

 

The filter() function 
In a similar way to the reduce() function, the filter() function takes two arguments: a function 

and an iterable. However,  instead of returning a single value, it returns another iterable. As its 

name suggests, the function creates a list of elements for which the function returns true (it 

filters the original list’s elements). 

 
# even numbers  

result = list(filter(lambda x: x % 2 == 0, [1, 2, 3, 4, 5])) 

print(result) 
 

The map() function 
Like the filter() and reduce() functions, the map() function takes two arguments: a function and 

an iterable. The function applies the function received as an argument to all elements in the list. 

 
result = list(map(lambda x: x+1, [1, 2, 3, 4, 5])) 

print(result) 
 

 



List methods (functions on lists) 
Python has a set of predefined methods that allow working with lists: 
 

append()   #Adds an element to the end of the list  

clear()    #Clear all elements from the list  

copy()     #Returns a copy of the list received as a parameter  

extend()   #Appends the elements of a list to the end of the 

            current list  

index()    #Returns the index of the first occurrence of the 

            element received as a parameter  

insert()   #Adds an element at the specified position  

pop()      #Delete the element at the specified position  

remove()   #Remove the first occurrence of the element given as 

            a parameter  

reverse()  #Reverses the order of the elements in the list  

sort()     #Sort the list 


